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S U M M A R Y  
Some deterministic and stochastic models for the spread of epidemics are studied. Some modcls are developed, which 
take into account a constant  incubation time, but where the probability of a new infection is more general than in 
known models. 

1. Introduction 

In this paper we shall consider Some models for the spread of epidemics. Both deterministic and 
stochastic models are studied. Early work in the mathematical  theory of epidemics was mainly 
concerned with the development of deterministic models. It is obvious that if we assume a 
deterministic causal mechanism for the spread of a disease the number  of infected people at. 
some time will always be the same if the initial conditions are identical. Evidently from obser- 
vations of epidemics follow that a number  of random factors determine the development of an 
epidemic. Therefore it is preferable to use probabilistic or stochastic models to describe the 
phenomena.  

An account of the theory of epidemics and an extensive bibliography are given by N. T. J. 
Bailey [1]. However, most of the models he describes do not take into account the effect of an 
incubation period. Bharucha-Reid [2] applies the Bel lman-Harr is  theory [3] to a class of 
epidemic problems which take an incubation period into account. Bharucha-Reid considers 
the length of time, an individual is infected before infecting someone else as a random variable. 
However  the chance of a new infection is independent on the seize of the infected populat ion at 
each instant. In many epidemics this is not the realistic description. Therefore we develop some 
models which take into account a constant incubation time but where the probabil i ty of a new 
infection is more general. 

2. Epidemic Without Removal 

We first consider the total population consisting of members  susceptible to infection and 
members  that are infected. No members  are removed from the population. Hence this is a 
rather unrealistic model because there is no hospitalization, death or recovery. 

However, because of its simplicity this model serves us to illustrate the method and the 
results. As we mentioned before we consider an incubation period (defined as the length of time 
an individual is infected before infecting somenone else) to be a constant (z sec). 

We consider a population of N + 1 individuals which are all susceptible to infection at time 
t < - ~ .  At time t = - ~  we infect one individual. Because the incubation period equals z this 
individual can infect other individual at time t = 0. So far the initial conditions. Now we shall 
describe the epidemic process as a deterministic one. We define : 

X( t )=  number  of infected individuals at time t, N + 1 - X ( t ) =  number  of susceptible indi- 
viduals at time t. We assume that the members  of the populat ion are homogeneously mixed. 
Therefore the rate of new infection is proport ional  to the number  of infectives (individuals 
which are able to infect) and the number of susceptibles. We notice that the number  of infectives 
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at time t equals X(t -~) .  Therefore the number of infected individuals is determined by the 
differential equation 

dX (t) _ 2X ( t -  z) {N + l - X (t)} (2.1) 
dt 

and the initial condition 

X ( t ) = l  for - z _ < t _ < 0  (2.2) 

The constant 2 may be absorbed in t by a proper time scale however, for reasons which will be 
obvious later, we choose 2=  (N+ 1)- 1. 

The value of X(t) is easily calculated for finite values of z and can be expressed in the form 

X ( t ) = N + l - N e x p  - ( N + I )  -1 ( s -z )d  . (2.3) 

We now consider the stochastic analogue of this problem. For  this purpose we define some 
probability functions. Let Pr {X(t)=i} be the probability that the number of infected indi- 
viduals equals i at time t. We now write down a basic law in probability theory to determine 
Pr {X(t+h)=i} as follows 

i 
Pr {X(t+h)= i} = • Pr {X(t )=  k} .Pr  {X(t+h)= i/X(t) = k} (2.4) 

k=O 

and for a homogeneously mixed population we suppose that the conditional probability of a 
jump one is or order h, which leads in the case of no incubation period to: 

Pr{X( t+h)=i}=  [1 i ( N + l - i )  h Pr{X( t )=i}+ 

( i - 1 ) ( N + 2 - i ) h  Pr {X(t )=  i - 1 } + o ( h )  
+ N + I  

We now use the notation Pr {X(t) = i} = Pi(t). 
In this case we used the rule that the probability that a unit jump occurs during the time 

interval t, t + h is proportional to the product of the number of infecting individuals at time t 
times the number of susceptible individuals at time t and proportional to h. A jump of size 
two and more occurs with a probability which is proportional to a higher power of h. 

If we consider an epidemic with a finite incubation period we use the same rule with respect 
to the occurrence of a jump. However, the number of infecting individuals at time t equals the 
number of infected individuals at time t -  z. We assume, the chance of a unit jump during the 
interval t, t + h in the casej is given at time t -  z and i is given at time t equals 

j (N + 1 -- i)(N + 1) 1 hPj(t- z) 

and therefore the total probability P~(t+ h) can be written as: 

P,(t+h)=Pi(t) ~ a  {1 J(N+l----i) h{ P j ( t - z )+  
i=o N + I  ) 

N@~ j (N + 2 -  i) hPj(t- z)+ o (h) (2.5) 
+ Pi-  1 (t) J~o N + 1 

If we define the expected value of X (t) as m (t) = E { X(t) }, we arrive at the following equation if 
we let h go to zero 

dPi(t ) M ( t - z )  
dt - n + l  { - ( N + l - i ) n i ( t ) + ( N + 2 - i ) n i  1(0} (2.6) 

with initial condition 
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1 for i = 1  
P~(0)=3] 0 for i # l  
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At first sight it looks like we end up with one equation for 2 unknown functions M (t) and 
Pi(t) or a nonlinear equation in Pi alone. We get rid of the unknown M (t) by solving the equation 
for tje expected value which we get by taking the expected value of (2.6) 

dM(t) _ M ( t -  z) {N§ 1--M(t)} 
dt N +  1 

with initial conditions. 

M ( t ) = l  for - v ~ < t ~ < 0  

Hence M(t) is known and has the form (2.3). If we introduce a new variable a as follows 

a= - l og[N - l {N+l - M( t ) } ]  = ( N + I ) - I  (s-z)ds 

equation (2.6) becomes 

dPi 
d~ + (n+ 1-i)Pi = ( N + 2 - i ) n i - 1  

with initial condition at a =  0, Pi = 3~ and the solution is 

In the case of large populations i.e. N large we get the solution, by expansion of (2.7), of the form 

(j0-- 1) I-1 e_(p_ 1) (2.8) 
P'( ' )  - ( i -  1)! 

where p = M (t) is the solution of 

dM 
dt - M( t -z )  

It can easily be shown that (2.8) is a solution of the equation 

dPi_ M(t-z){-Pi . i .ni-1} (2.9) 
dt 

which we get from (2.6) by taking N + 1 --* oo. Although we may find the solution of (2.6) for 
large values of i in power series of (N § 1) 1 by expanding (2.7), it is worth while to develop an 
asymptotic approach of (2.6) directly by means of a method which is useful for more general 
stochastic problems. 

3. Asymptotic Approach 

We will use an asymptotic method which is similar to methods of geometrical optics and 
diffraction theory. We therefore introduce a small parameter e = ( N +  1)-1. Furthermore we 
define u (x, t) = Pi(t) with x = si and m ( t -  z) = rfi(t) = sM ( t -  r). 

The equation for u (x, l) has the form 

_ [ - ( 1 - x ) , ( x ,  t ) + { m - ( x -  t)] (3.1) 
~t s 

In a paper which will be published, Ludwig [4] suggests the asymptotic solution being of the 
form 

u(x, t) - e ̀1/~)r [a(x, t)§ ~;a I (x, t) §  ~, (3.2) 
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Substi tuting (3.2) in (3.1) and equating like powers of e, we find 

49, = m ( t -  z)(1 - x)(e - ~ -  1) 

and 

(3.3) 

[ 1 - x  4~ 1}a] (3.4) at = m ( t - z ) e  -~x I - ( 1 - - x ) a x  + ~- -~ -  xx+ 

The first equat ion may be called the eikonal equat ion and the second one the t ransport  
equation. As boundary  condit ion for the eikonal equat ion we take 

�9 = 0 i f x = 0  and a = - l o g ( 1 - m ( t ) ) = O .  

The solution of  (3.3) becomes 

= - a (1 - x ) -  (1 - x) log (1 - x ) -  x log x + x log (1 - e -  ~) (3.5) 

and the solution of (3.4) equals 

a(x, t) = K(1 - x ) - ~ x  -~ 

where K is an arbi t rary constant.  Hence the asymptot ic  solut ion of (3.1) has the form 

u(x, t) = K(1 - x)-((1-~)/~)-~ x-(X/')-~(1 - e ~)x/~ e-(~/~)(1-~) (3.6) 

To  determine the constant  K we have to match  (3.6) with the solution for small values of i 
i.e. with the solution (2.8), then follows 

K = (2u) ~ ( N +  1) -~ 

and the asymptot ic  solution becomes 

u (x, t) = (270- k (N + 1)- ~ (1 - x)-((1 - ~)m- ~. x-(~/~) - ~" 
"(1 - e - " )  (~/~) e (a/e)(1-x) ~ pi((7) (3.7) 

with 

a = - l o g ( I - r e ( t ) )  

and 
dm 
dt - m ( t - ~ ) ( 1 - m ( t ) ) ,  m ( t ) : l  for - z _ < t _ < 0  

As we ment ioned before (3.7) also follows by expanding (2.7). However  in many  cases where 
no exact solution is available the asymptot ic  solution can be found in a similar way (see for 
instance Ludwig [4]). 

4. Epidemic with Removal 

As we ment ioned the application of the epidemic model  described in section 2 is limited to a 
ra ther  non  realistic case because no infected individuals have been removed by death, recovery 
or other  reasons. Hence we expect a better description if we take this phenomena  into account.  
We assume that  a p ropor t ion  of  the infected popula t ion  may be removed.  It is obvious that 
here a delay may  occur. The  rate of removal  may  be p ropor t iona l  to the number  of infected 
individuals at a time ~c earlier. The  case we treat is the more  complicated,  may  be less realistic, 
case where this delay time ~: equals zero. For  arbi t rary finite values of tca similar model  can be 
treated. At  the same time a birth rate of new susceptible individuals may  be taken into account.  
This gives no severe complicat ions too. 

The following quantities are defined : 
x ( t )=  number  of susceptible individuals at time t, 
y ( t)= number  of infected individuals at time t, 
z (t) = number  of removed individuals at time t. 
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The same incubation period r will be considered. 
Again we consider the infected and susceptible individuals to be mixed homogeneously. Hence, 
the differential equation describing the deterministic process may be written as follows 

dx 
- px( t )  y ( t -  

dt 

dy 
d7 = fix (t) y ( t -  z) - py (t) , (4.1) 

dz 
dt - py(t),  

with initial conditions at t = 0, 

x = N , z = 0  and at z<t_<0,  y = l  

We normalize the time in such a way that f i = ( N +  1) -1 and p is a constant. 
The solution of this set of equations is easily found to be : 

x = N e x p  ( N + I )  -1 o y ( a - z ) d a  , 

-[1 + N ' exp  t0e s,(  (42, 
z = N + l - x - y .  

We define the probability function Pij as follows: pij(t)=probability that x(t)= i and y(t)=j  
at time t. 

With similar arguments that led to equation (2.6) we arrive at an equation for p~j(t) of the 
form: 

dp i j_  M(t) 
dt N + I  {(i+l)Pi+a'J-t- ipiJ}+P{(i+l)pi 'J+l-JPiJ} (4.3) 

with initial conditions 

pij(O) = 0,  pN, I(0) = 1 

In this equation M (t) is the expected value of y at time ( t -  r) hence 

(t) = E {y (t - z) } 

The solution of (4.3) can be found by using the probability generating function 

P (z, w, t) = ~ PijZiw j (4.4) 
i,j 

To find an equation for P we multiply (4.3) with ziw j and sum over all i, j. 
This procedure leads to 

~P h4(t) (w z" c~P c~P 
& - N + I  - ) ~ z  + P(1-W)~ww 

with initial condition P(z, w; O)= zNw. 
The solution of (4.5) is easily found to be 

P= {z+ fom@Ei+(w-l,e-'('-*']exp N 

(4.5) 

(4.6) 
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where we use the notation nS(t)= M(t):(N+ 1) -1 where M( t )=  y ( t - z ) g i v e n  by (4.2). From 
(4.6) we derive plj(t) by means of the expansion of P in powers ziw j. This leads to the final result" 

N! exp - rfi(~)d ~ (t exp (_  (a 4) }j--1 
o I r~(a)exp[-p(t-a)] r~(~)d da PiJ(t) = (N- i - j ) !  i! ( j -  1)! . .  0 . 0 

�9 { f ~ o r f i ( a ) { 1 - e x p [ - p ( t - - a ) ] } e x p (  - i-~rfi(~)d~)dal N-i-j. 

1 ,e~p t  t tfi,a, expL-p( t -a , j  exp (()d da+ 
J o 

ePt f~o t f  ~ ~) + N - i - j + l  rfi(a){1-exp[-p(t-a)]}exp - rfi(~)d da (4.7) 
�9 0 

From this solution several asymptotic expressions can be derived. For instance we may con- 
sider the case of large N, with i of the same order. Or we consider i 3 both of the order N. 
All this can be done by substituting Stirling's formula in the faculties. An indirect asymptotic 
approach, as carried out in section 3, leads to the same answer. 

R E F E R E N C E S :  

[1] N. T. J. Bailey, The mathematical theory ofepi~temics, Charles Criffin and Company, Ltd. 1957. 
[2] A. T. Btlarucha-Reid, On the stochastic theory of epidemics, Proceedings of the third Berkeley Symposium on 

mathematical statistics and probaility, Vol. III, University of California press, Berkeley 1956. 
[3] R. Bellman and T. E. Harris, On age-dependent binary branch processes, Annals of Math., 55 (1952) 281~295. 
[4] D. Ludwig : Asymptotic solution of stochastic epidemic equations, (to be published). 

Journal of Engineerin 9 Math., Vol. 5 (1971) 289-294 


